ÜBER DIE STRUKTUR VON 2-ARYLAMINO-2-THIAZOLINEN, ANALOGEN THIAZINEN UND

IHREN AMIDEN I

GRUNDVERBINDUNGEN

L. Toldy, P. Schar, K. Faragó, I. Tóth, L. Bartalits Institut für Arzneimittelforschung, Budapest, Ungarn

(Received in Germany 15 April 1970; received in UK for publication 27 April 1970)

Für einige, auf bekannte Weise synthetisierten /1,2,3/ 2-R-Amino-2-thiazoline und Thiazine /R=Aryl, Aralkyl, Alkyl; n=1,2/, wurden auf Grund der 6MCH₂ Signale im NMR-Spektrum von analogen Modellsubstanzen mit endo-, bzw. exozyklischer Doppelbindung /s. Tab. No. 1., 2./ die tautomeren Strukturen I oder II empfohlen /3,4/.

In unseren — noch früheren — Untersuchungen mit 2-Arylamino-Derivaten verwendeten wir einige Modelle /No. 3., 4./, die mit den vorliegenden Verbindungen naher verwandt sind, als die von RABINOWITZ /4/. Diese Modelle waren, ähnlich wie die zur Frage stehenden Verbindungen, 2-Arylamino-Derivate, und — wie es zu erwarten ist —, ist der önch wert von I höher, als der von II, der Unterschied beträgt 0.35 ppm. / Bei den Modellen No.1. und 2. war dieser Unterschied 0,66 ppm. Das Modell vom Typ I /No.1./ ist aber kein 2-Arylamino-Derivat und sein önch Signal erscheint um 0,29 ppm höher, als dasjenige unseres Modelles mit einer endo Doppelbindung /No.3./. Auch diese Tatsache weist darauf hin, dass es zweckmässig ist, die Modellsubstanzen unter Berücksichtigung der Substituentswirkungen auszuwahlen. /

Auf Grund des öNCH₂ Wertes unseres Modelles No.3. konnte einigen der in der Tabelle angeführten Thiazoline /No. 5-9./ die tautomere Struktur I zugeordnet werden, während bei anderen, die einen stark elektronegativen Arylsubstituenten

Tab . 1 1 .

Mo.	Formel	Schap.	r Can cm ⁻¹	J mcH ₂ ppm J, Hz	Struk- tur	Beserkung
1.	H ₃ C — C S	-	4-	4,09, t J = 7	I	Lit./4/
2.	Ø-1= € 8	-		3,43, t J = 7	II	N'
3.	O-I-CE3 CH,	Кр ₅ 134 ⁰	1635	3,80, t J, ?	I	Darst. Heth.
4.	F ₃ C. F CR ₃	Kp ₂	1635	3,45, t J, ?	11	
5.	CH ₃ - HH - C S	-	1655	3,70, t J = 6 ^x	1	Bekannt Lit./6/
6.	Br-CH3 - NH - C S	99-104 ⁰	1655	3,65, t	I	Darst. Heth.
7.	Br CH3 Br S	155 – 157 ⁰	1650	3,70, t	I	. * .
8.	Br CH3 CH3	109-112	1650	3,70, t	I	H

9.	C1 NH-C S	179-181°	1645	3,70, t J = 5 ^x	I	Darst. Meth.
10.	NO ₂ CH ₃	130-133°	1640	3,30, t J = 5 ^x	1	11
11.	Br CH ₃ NO ₂ CH ₃	173 - 175°	1635	3,35, t J = 5 ^x	I	. 11
12.	Br NH -C S	160-161°	1640	3,20, t J = 6 ^x	I	_ # _
13.	H ₃ c — C s		-	3,57, t J=5,5	I	Lit./4/
14.	$\bigcirc - \mathbf{N} = \mathbf{C}_{\mathbf{S}}$	-	1613	3,28, t J≃5,5	II	Lit./4/ C=N /2/
15.	CH ₃ HI CH ₃ CH ₃	-	1625	3,35, t J = 6	II	Bekannt Lit./7/
16.	$Br \bigcirc \begin{matrix} CH_3 & HN \\ -N = C \\ CH_3 \end{matrix}$	125~127 ⁰	1625	3,35, t J = 6	11	Darst. Meth.
17.	$\bigcirc_{C1}^{C1} = C$	179–181°	1625	3,40, t J = 6	II	HCl, Bekannt Lit./7/

18.	CH ₃ HH NO ₂ CH ₃	151-154° 1615	3,35, t J = 6	II	Darst. Meth.
19.	Br CH ₃ HH Br CS CH ₃	207 – 209 ⁰ 1630	3,30, t J = 5	II	- " -
20.	Br Br S	180–185° 1625	3,05, t J = 7	11	- " -

tragen /No. 10-12./, das δ NCH₂ Signal in dem für die tautomere Struktur II charakteristischen Gebiet erscheint /Modell No. 4 und 2./.

Demgegenüber bewiesen die Massenspektren auch bei den letzteren Verbindungen die Struktur I /5/. Es ist also offensichtlich, dass die ôNCH₂ Werte mehr von den Substituenten, als von der Position der Doppelbindung beeinflusst werden können. Für das Studieren der Tautomerie I-II mittels der NMR-Methode sind deswegen nur entsprechend nahe verwandte Modellsubstanzen geeignet.

Auf die Tautomerie der Thiazine konnte mittels der Modelle /No. 13, 14./ von RABI-NOWITZ /4/ geschlossen werden, ihre Struktur II wurde auch durch die Massenspektren unterstützt /5/.

Die vC=N Banden im IR-Spektrum stehen übrigens mit den Strukturen I und II im Einklang, das heisst, dass im Falle von analogerweise substituierten Heterozyklen die Frequenz der vC=N Bande bei der Struktur II, infolge der Konjugation der C=N Bindung, kleiner ist. als bei I.

Die IR-Spektren wurden mit einem Spektrometer ZEISS-UR-10 /JENA/, in KBr-Pastille, die NMR-Spektren mit einem JEOL C-60 /60 MHz/, in CDCl $_3$, bzw. im bezeichneten / $\frac{1}{1}$ /Falle in /CD $_3$ / $_2$ CO, mit TMS als Referent, aufgenommen / $_3$ t = Triplett /.

Das Spektrum von Typ A₂X₂ entartet in grossem Masse nach dem Typ A₂B₂, der Wert der Kupplungskonstante /J/ wurde auf den Grenzfall A₂X₂ bezogen angegeben.

[?] In den bezeichneten Fällen kann der genaue Wert der Kupplungskonstante /J/ wegen der Überlappung der SCH/CH3/ und NCH2 Signale nicht angegeben werden.

Literatur

- 1/ R.C. Elderfield, <u>Heterocyclic Compounds</u>, Vol. 5. p. 685 /John Wiley and Sons, In., New York, 1957/.
- 2/ M. Tišler, Archiv der Pharm., 293/65, 621 /1960/.
- 3/ E. Cherbuliez et al., Helv., 49, 807 /1966/.
- 4/ J. Rabinowitz, <u>Helv.</u>, <u>52</u>, 255 /1969/.
- 5/ Über unsere MS-Untersuchungen wird in der II. Mitteilung berichtet.
- 6/ H. Najer, R. Guidicelli, <u>Bull.</u>, <u>1960</u>, 960.
- 7/ BRD Patent, No. 1 173 475 /1964/.